MATH 2060 TUT 7
Midterm Review
$\underline{Q} \mid$ Define a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x)= \begin{cases}x^{2} & x \in \mathbb{Q} \\ 0 & \text { otherwise. }\end{cases}$
Show that $f^{\prime}(0)$ exists and $f^{\prime}(x)$ does not exist for any $x \neq 0$.
Ans: Note $\frac{f(t)-f(0)}{t-0}= \begin{cases}t & t \in \mathbb{C} \\ 0 & \text { otherwise }\end{cases}$

$$
\Rightarrow\left|\frac{f(t)-f(0)}{t-0}\right| \leqslant 1+1 \quad \forall t \in \mathbb{R}
$$

So, $\quad f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(t)-f(0)}{t-0}=0 \quad$ (by Squeeze Thu)

- Suppose $x \in \mathbb{B} \backslash\{0\rangle$

By density of $\mathbb{R} \mathbb{C}, \exists$ a seq of irrational numbers $\left(t_{n}\right)$ s.t. $\lim \left(t_{n}\right)=x$.
Then $\quad \lim _{n \rightarrow \infty} \frac{f\left(t_{n}\right)-f(x)}{t_{n}-x}=\lim _{n \rightarrow \infty} \frac{0-x^{2}}{t_{n}-x}$ does not exist
Heme $f^{\prime}(x)$ does not exist (by sequential criterion).

- Suppose $x \in \mathbb{R} \backslash \mathbb{R}$.

By density of \mathbb{Q}, \exists a seq of rational numbers $\left(\rho_{n}\right)$ s.t. $\lim \left(\rho_{n}\right)=x$.
Then $\quad \lim _{n \rightarrow \infty} \frac{f\left(\rho_{n}\right)-f(x)}{\rho_{n}-x}=\lim _{n \rightarrow \infty} \frac{\int_{n}^{2}-0}{\rho_{n}-x}$ does not exist Heme $f^{\prime}(x)$ does not exist (by sequatial criterion).

Q2 Let f be a differentiable function on (a, b). Show the followings:
(i) If f is unbounded, then so is f^{\prime}. Does the converse hold?
(ii) If f^{\prime} is bounded, then f^{2} is uniformly continuous on (a, b).

Ans.: i) Suppose that f^{\prime} is bounded on (a, b). say $\left|f^{\prime}\right| \leqslant M$ on (a, b) Fix $c \in(a, b)$
By MVT, we have $\forall x \in(a, b)$,

$$
\begin{aligned}
& \quad f(x)-f(c)=f^{\prime}(\xi)(x-c) \quad \exists \xi \text { between } c, x \\
& \Rightarrow \quad|f(x)| \leqslant|f(c)|+\left|f^{\prime}(\xi)\right||x-c| \\
& \leqslant \leqslant|f(c)|+\mid M(b-a)=: M^{\prime},
\end{aligned}
$$

contradicting the assumption that f is unbounded.
The converse is NOT true.
For example, $\quad f(x):=\sin \left(\frac{1}{x}\right)$ for $x \in(0,1)$
is bounded by 1, but $f^{\prime}(x)=-\frac{1}{x^{2}} \cos \left(\frac{1}{x}\right)$ is unbounded
ii) By i) f^{\prime} rounded $\Rightarrow f$ bounded.

Let $M_{1}, M_{2}>0$ s.t. $|f(x)| \leqslant M_{1},\left|f^{\prime}(x)\right| \leqslant M_{2} \quad \forall x \in(a, b)$
Now, $\forall x, y \in(a, b)$,

$$
\begin{aligned}
\left|f^{2}(x)-f^{2}(y)\right| & =|f(x)+f(y)||f(x)-f(y)| \\
& \leqslant 2 M_{1} \cdot|f(x)-f(y)| \\
& =2 M_{1} \cdot\left|f^{\prime}(\xi) \cdot(x-y)\right| \quad \exists \xi \text { between } x, y \text { by MVT } \\
& \leqslant 2 M_{1} M_{2}|x-y| .
\end{aligned}
$$

So f^{2} is Lipschitz and heme uniformly cts on (a, b)

Q 3 Let f be infinitely differentiable function. Suppose that there is a polynomial p of degree n such that for some $\delta, C>0$,

$$
|f(x)-p(x)| \leq C\left|x-x_{0}\right|^{n+1}, \forall x \in\left[x_{0}-\delta, x_{0}+\delta\right] .
$$

Show that p must be the n-th Taylor polynomial of f at x_{0}.

Ans: Claim: if a polynomial o satisfies

$$
|q(x)|=\left|b_{0}+b_{1}\left(x-x_{0}\right)+b_{2}\left(x-x_{0}\right)^{2}+\cdots+b_{n}\left(x-x_{0}\right)^{n}\right| \leqslant C\left|x-x_{0}\right|^{n+1}
$$

then $q \equiv 0$.
Reason: Set $x=x_{0} \Rightarrow b_{0}=0$
Divide both sides by $\left|x-x_{0}\right|$, then let $x \rightarrow x_{0}$, we get $b_{1}=0$ Keep doing so, we get $b_{j}=0 \quad \forall j$.

Now, by Taylor's Thy, $\quad f(x)=P_{n}(x)+R_{n}(x)$
where $P_{h}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$
and the remainder $R_{n}(x)$ satisfies

$$
R_{n}(x)=\frac{1}{(n+1) \cdot} f^{(n+1)}(c)\left(x-x_{0}\right)^{n+1} \quad \text { for some } c \text { between } x_{0}, x
$$

$$
\begin{aligned}
\Rightarrow \quad\left|R_{n}(x)\right| & \leqslant \frac{1}{(n+1)!} \cdot \sup _{x \in[x,-\delta, x,+\delta]}\left|f^{(n+1)}(x)\right|\left|x-x_{0}\right|^{n+1} \\
& =: C_{1}\left|x-x_{0}\right|^{n+1}
\end{aligned} \text { finite since } f \text { is infinitely diff? } . ~ \$
$$

Let $p(x)=a_{0}+a_{1}\left(x-x_{0}\right)+\cdots+a_{n}\left(x-x_{0}\right)^{n}$ be a polymanial that satisfies the assumption.
We have $\quad\left|P_{n}(x)+R_{n}(x)-P(x)\right| \leqslant C\left|x-x_{0}\right|^{n+1}$

$$
\begin{aligned}
& \Rightarrow \quad\left|P_{n}(x)-p(x)\right|-\left|R_{n}(x)\right| \leqslant C\left|x-x_{0}\right|^{n+1} \\
& \Rightarrow\left|\left(f\left(x_{0}\right)-a_{0}\right)+\left(f^{\prime}\left(x_{0}\right)-a_{1}\right)\left(x-x_{0}\right)+\cdots+\left(\frac{f^{(n)}\left(x_{0}\right)}{n!}-a_{n}\right)\left(x-x_{0}\right)^{n}\right| \leqslant\left(c_{1}+c\right)\left(x-x_{0}\right)^{n+1} \\
& \quad \forall x \in\left[x_{0}-\delta, x_{0}+\delta\right]
\end{aligned}
$$

By Claim, $\quad a_{j}=\frac{f^{(j)}\left(x_{0}\right)}{j!} \quad, j=0,1, \ldots, n$

Q4 a) Using Riemann sum and suitable partition of the interval [1,2], show that

$$
\int_{1}^{2} \frac{1}{x} d x=\ln 2-\ln 1
$$

b) Evaluate the following limits:

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right)
$$

Ans: a) Let $f(x)=\frac{1}{x}$.
Then f is cts on $[1,2]$. Heme $f \in R[1,2]$
Consider the partition interval $[a, b]$ with tag pt. c
Want : $f(c)(b-a)=\ln b-\ln a$

$$
\frac{1}{c}=\frac{\ln b-\ln a}{b-a}
$$

Such $c \in(a, b)$ exists by MVT.
Let $P=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ be an arbitrary partition of $[1,2]$.
By MVT, $\exists t_{i} \in\left(x_{i-1}, x_{i}\right)$ s.t.

$$
\frac{1}{t_{i}}=\left.(\ln x)\right|_{x=t_{i}}=\frac{\ln \left(x_{i}-\ln \left(x_{i-1}\right)\right.}{x_{i}-x_{i-1}}
$$

Now, the tagged partition $\dot{p}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ satisfies

$$
\begin{aligned}
\int(f ; \dot{p}) & =\sum_{i=1}^{n} \frac{1}{f_{i}}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n}\left(\ln x_{i}-\ln x_{i-1}\right) \\
& =\ln x_{n}-\ln x_{0}=\ln 2-\ln 1
\end{aligned}
$$

Let $\varepsilon>0$. Since $f \in R[1,2], \exists \delta_{\varepsilon}>0$ s.t. if $\|\dot{Q}\|<\delta_{\varepsilon}$, then $\left|S(f ; \dot{Q})-\int_{1}^{2} f\right|<\varepsilon$
Thus, using the tags above, we have

$$
\left|\ln 2-\ln 1-\int_{1}^{2} f\right|<\varepsilon
$$

Sine $\varepsilon>0$ is arbitrary. $\quad \int_{1}^{2} f=\ln 2-\ln 1$

Q4 a) Using Riemann sum and suitable partition of the interval [1,2], show that

$$
\int_{1}^{2} \frac{1}{x} d x=\ln 2-\ln 1
$$

b) Evaluate the following limits:

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right)
$$

Ans! b) Observe

$$
\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}=\frac{1}{n} \sum_{j=1}^{n} \frac{n}{n+j}=\frac{\sum_{j=1}^{n} \frac{1}{1+j / n} \cdot \frac{1}{n}}{\text { Riemann sum }}
$$

Let $\dot{P}_{n}=\left\{\left[1+\frac{i-1}{n}, 1+\frac{i}{n}\right], 1+\frac{\tau}{n}\right\}_{i=1}^{n}$ be a tagged partition of $[1,2]$
Then $\left\|\dot{p}_{n}\right\|=\frac{1}{n}$
and $\quad \int\left(f ; \dot{P}_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+i / n}$

Let $\varepsilon>0$.
Choose $\delta_{\varepsilon}>0$ as in a).
Tale $N \in \mathbb{N}$ sit. $\frac{1}{N}<\delta_{\varepsilon}$.
Now, $\forall n \geqslant N$, we have $\frac{1}{n} \leqslant \frac{1}{N}<\int_{L}$ and heme

$$
\begin{aligned}
& \left|S\left(f ; \dot{p}_{n}\right)-\int_{1}^{2} f\right|<\varepsilon \\
\Rightarrow \quad & \left|\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+1 / n}-\ln 2\right|<c
\end{aligned}
$$

Therefore $\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\right)=\ln 2$

