MATH2060 TUTO7
Midtern Review
$ \underline{\text{Col}} \text{Define a function } f: \mathbb{R} \longrightarrow \mathbb{R} \text{ by } f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ 0 & \text{otherwise.} \end{cases} $
Show that $f'(0)$ exists and $f'(x)$ does not exist for any $x \neq 0$.
Ans: Note $\frac{f(t) - f(0)}{t - 0} = \begin{cases} t & t \in \mathbb{Q} \\ 0 & otherwise \end{cases}$
$\Rightarrow \left \begin{array}{c} f(f) - f(o) \\ t - o \end{array} \right \leq t \forall t \in \mathbb{R}$
So, $f'(0) = \lim_{x \to 0} \frac{f(t) - f(0)}{t - 0} = 0$ (by Synecze Thm)
· Suppose X & Q\101
By density of IRVR, = a seg of irrational humbers (tn) s.t. lim (tn) = X.
• Suppose $x \in \mathbb{Q} \setminus \{0\}$ By density of $\mathbb{R} \setminus \mathbb{Q}$, $\exists a \text{ seg of invational numbers } (t_n) \text{ s.t. } \lim_{n \to \infty} (t_n) = x.$ Then $\lim_{n \to \infty} \frac{f(t_n) - f(x)}{t_n - x} = \lim_{n \to \infty} \frac{O - x^2}{t_n - x}$ does not exist Hence $f'(x)$ does not exist (by sequential criterian).
Heme f'(x) does not exist (by sequential criterion).
· Suppose XER/R.
By density of \mathcal{R} , \exists a seg of rational numbers (S_n) s.t. $\lim_{n \to \infty} (S_n) = X$.
Then $\lim_{n \to \infty} \frac{f(s_n) - f(x)}{s_n - x} = \lim_{n \to \infty} \frac{s_n^2 - 0}{s_n - x}$ does not exist
Heme f'(x) does not exist (by sequential criterion).

- (i) If f is unbounded, then so is f'. Does the converse hold?
- (ii) If f' is bounded, then f^2 is uniformly continuous on (a, b).

Suppose that f'is bounded on (a,b), say If'l < M on (a, L) Ans: i) Fix CG (a,b) By MVT, we have $\forall x \in (a, b)$, f(x) - f(c) = f'(s)(x-c) = 3 between C, x $|f(x)| \leq |f(c)| + |f'(s)| |X-c|$ $\leq |f(c)| + M(b-a) =: M'$ contradicting the assumption that f is unbounded. The converse is NOT true. For example, $f(x) := \sin(\frac{1}{x})$ for $x \in (0, 1)$ is bounded by [, but $f'(x) = -\frac{1}{x^2} \cos(\frac{1}{x})$ is unbounded ii) R, i) f'bounded => f bounded. Let M, M2>D S.t. $|f(x)| \leq M$, $|f'(x)| \leq M_2$ $\forall x \in (a, b)$ Now, Vx, ye (a,b), |f'(x) - f'(y)| = |f(x) + f(y)| |f(x) - f(y)| $\leq 2 M_{1} \cdot |f(x) - f(y)|$ = 2 M, If (3) · (x-y)] = 3 between x, y by MV7 $\leq 2 M_1 M_2 |x-y|$.

So f² is Lipschitz and hence uniformly cts on (a, b)

$$r_{2}$$

Let f be infinitely differentiable function. Suppose that there is a polynomial p of degree n such that for some $\delta, C > 0$,

$$|f(x) - p(x)| \le C|x - x_0|^{n+1}, \forall x \in [x_0 - \delta, x_0 + \delta].$$

Show that p must be the *n*-th Taylor polynomial of f at x_0 .

Ans: Claim: if a polynomial g satisfies

$$|g(x)| = |b_{0} + b_{1}(x-x_{0}) + b_{2}(x-x_{0}) + \dots + b_{n}(x-x_{0})^{n}| \leq C |x-x_{0}|^{n+1}$$
then $g \equiv O$.
Reason: Let $x = x_{0} \implies b_{0} = O$
Pivide both sides by $|x-x_{0}|$, then let $x - x_{0}$, we get $b_{1} = O$
Now, by Taylor's Thin, $f(x) = P_{n}(x) + P_{n}(x)$
where $P_{n}(x) = f(x_{0}) + f'(x_{0})(x-x_{0}) + \dots + \frac{f^{UN}(x_{0})}{n_{1}}(x-x_{0})^{n+1}}$
and the remainder $P_{n}(x)$ satisfies
 $P_{n}(x) = \frac{1}{(n+1)}[f^{(n+1)}(x) + (x-x_{0})^{n+1}]$
 $=: C_{1}[X-x_{0}]^{n+1}$ fibite since f is infinitely diff.
let $p(x) = a_{0} + a_{0}(x-x_{0}) + \dots + a_{n}(x-x_{n})^{n}$ be a polynomial
that satisfies the assumption.
We have $P_{n}(x) - p(x)| \leq C |x-x_{0}|^{n+1}$
 $\Rightarrow P_{n}(x) + P_{n}(x) - p(x)| \leq C |x-x_{0}|^{n+1}$
 $\Rightarrow P_{n}(x) - p(x)| - |P_{n}(x_{0})| \leq C |x-x_{0}|^{n+1}$
 $\Rightarrow P_{n}(x) - p(x)| - |P_{n}(x_{0})| \leq C |x-x_{0}|^{n+1}$
 $\Rightarrow P_{n}(x) - p(x)| - |P_{n}(x_{0})| \leq C |x-x_{0}|^{n+1}$
 $\Rightarrow P_{n}(x) - p(x)| - |P_{n}(x_{0})| \leq C |x-x_{0}|^{n+1}$
 $\Rightarrow P_{n}(x) - p(x)| - |P_{n}(x_{0})| \leq C |x-x_{0}|^{n+1}$
 $\Rightarrow P_{n}(x) - p(x)| - |P_{n}(x_{0})| \leq C |x-x_{0}|^{n+1}$
 $\Rightarrow P_{n}(x) - p(x)| - |P_{n}(x_{0})| = C |x-x_{0}|^{n+1}$

Q4 Using Riemann sum and suitable partition of the interval [1,2], show that G) $\int_{-\infty}^{2} \frac{1}{x} dx = \ln 2 - \ln 1.$ Evaluate the following limits: 6) $\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} \right)$ Ans! by Observe $\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} = \frac{1}{n+1} \sum_{j=1}^{n} \frac{n}{n+j} = \sum_{j=1}^{n} \frac{1}{1+j/n} \cdot \frac{1}{n}$ Let $\dot{P}_n = \{[1+id, 1+id], 1+id]_{i=1}^n$ be a tagged partition of [1, 2]Then $\|\dot{\mathbf{p}}_n\| = \frac{1}{n}$ $S(f', \dot{p}_n) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+ih}$ and Let 8 70 Choose de >0 as in a). Take NEW s.t. . To < Se. Now, VHZN, we have $\frac{1}{N} \leq \frac{1}{N} \leq S_{c}$ and here $\int S(f'; P_{W}) - \int f' f < c$ $\left| \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+ih} - \ln 2 \right| < C$ Therefore $\lim_{n \to 1} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+n} \right) = \ln 2$